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Abstract—Neuromodulation of the brain is an emerging ther-
apy to control the epileptic seizure. The therapy can be improved
with a closed-loop mechanism in which the electrical stimuli is
activated in accordance with the seizure onset. In this paper,
a correlation integral (CI) processor in a form of application
specific integrated circuit is designed to estimate the brain
complexity, chaoticity, after the EEG/ECoG sensors. Since the
neural firing becomes more organized prior to the seizure, the
intent is to drive the neuromodulator after the early detection
of the seizure onset. With the simplified CI algorithm and
channel-folded architecture, 0.14μW/channel power consumption
is achieved in 90nm CMOS process to simultaneously extract
chaoticity for 16 channels in a real time. The simulation results
demonstrate a 98.23% and 97.81% of sensitivity and specificity
for the classification of normal and epileptic brain rhythms.

I. INTRODUCTION

Neuromodulation of the brain is an emerging therapy to
control the epileptic seizure in the last decade. This treat-
ment uses the electrical current pulses to break down the
synchronized firing of the epileptic neurons, and has been
proven to be effective in some clinical trials [1], [2]. Most
of the neuromodulation systems are operated with an open-
loop mechanism. In this mechanism the device keeps injecting
the current pulses according to the pre-programmed parame-
ters without considering the dynamics of the brain. Recent
studies suggest that the percentage of the epileptic patients
to be rendered as seizure-free cases could be improved from
0% to 17% [3] if the brain stimulation can be deliberately
executed before the seizure onset. Therefore the closed-loop
neuromodulator that electrically stimulates the brain according
to the brain dynamics is required.

Electroencephalogram (EEG) and electrocorticogram
(ECoG) are the physiological signals reflecting the brain
dynamics. Unsupervised algorithms have been proposed
to extract the features from EEG/ECoG signals and then
detect or predict the seizure onset based on the extracted
features [4], [5]. Among these algorithms, correlation integral
(CI) and correlation dimension (CD) can be used to estimate
the chaoticity for the non-linear system of the brain [4],
[6]–[8]. Prior to a seizure, neural firing patterns become more
organized, causing the decrease of the brain chaoticity, and
the CI/CD value becomes one of the important bio-markers
for the seizure prediction [9]–[12].

The closed-loop neuromodulation system to control the
epileptic seizure is composed of EEG/ECoG sensors, signal
processing units, and neuromodulators. The processing units
along with the sensor are used to monitor the brain dynamic
and activate the prompt feedback control to the neuromodu-
lators once an epileptic seizure is predicted. As the current

trend to make the system implantable, the hardware on a
miniaturized and low-power VLSI on-chip system is preferred
because of the space and power constrains imposed by the
applications. Since the brain sensing circuitries in microwatt
power consumption have been reported [13], the hardware
realization of the seizure early detection algorithms on a
similar or lower power level are highly desired. Compared
to the general-purpose microprocessor, application specific
integrated circuit (ASIC) is more practical for the minimized
computational overhead and optimized power dissipation [3],
[14]. ISCAS2007-InVitroEpilepticVLSI In this paper, a CI
processor in a form of ASIC is designed to extract the
brain chaoticity features simultaneously for 16 channels in the
closed-loop epileptic neuromodulator. Sub-microwatt power
consumption is achieved for the processor after the computa-
tional complexity reduction through the algorithm modification
and the leakage power saving through the hardware sharing
among channels. The paper is organized as follows. We
introduce the proposed closed-loop neuromodulation system
in Section II and review the CI algorithm in Section III.
In Section IV, the hardware architecture is proposed with
several low-power design considerations. The simulation and
implementation results are described in Section V. Finally the
conclusion is made in Section VI.

II. THE CLOSED-LOOP NEUROMODULATION SYSTEM

The closed-loop neuromodulation system for epilepsy con-
trol is an implantable miniaturized device featuring neu-
rostimulator and neuro-signal processing units. Such power-
limited application demands ultra low-power implementation
from every design consideration. For example, computational
complexity and hardware area should be maintained at a
minimum to decrease dynamical power and leakage power
consumption, respectively. Also, ASIC realization with more
advanced process could benefit the power dissipation perfor-
mance.

A. System Architecture

Fig. 1 shows the detailed block diagram of the proposed
closed-loop neuromodulation system, which simultaneously
processes M channels of EEG/ECoG. The system features
three sequential operation stages: 1) the front-end analog cir-
cuit for EEG/ECoG recording, 2) the digital signal processing
unit (DSPU) and 3) the multi-channel neurostimulator. The
M-channel EEG/ECoG sensed by the electrodes are amplified,
digitized and time-multiplexed by the front-end circuit. Then,
the DSPU processes M-channel signals for early identifying of
upcoming seizures. When seizures are detected, the N-channel
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Fig. 1. The block diagram of the closed-loop neuromodulation system.

Fig. 2. The 16-channel time-multiplexed EEG/ECoG to the DSPU.

neurostimulator would send stimulating current to break down
the epileptic neural firing.

The DSPU mainly comprises the programmable FIR fil-
ter for signal preprocessing, the feature extraction module
for epileptic EEG/ECoG characterization and the k-nearest
neighbor (KNN) classifier for epileptic feature decision. Multi-
feature scheme is applied to enhance the detection accuracy
from time, frequency, spatial and non-linear chaotic domain
analysis. Feature/channel selection is performed to preserve
useful information and reduce total data quantity.

B. System Specification

Our design targets at the system with 16 channels processing
capability, i.e. M = 16. The sampling rate of EEG/ECoG from
each channel is 256Hz with input bit precision of 9 bits, and
the system clock rate becomes 4096Hz by multiplexing signals
from 16 channels as shown in Fig. 2 for DSPU operation. To
achieve real time detection response, the detection interval,
which is also the feature update period, is set to be 0.1
second. For linear measures, curve length (CL) [15], rhythmic
discharge (RD) [16] and mean phase coherence [17] are
adopted for time, frequency and spatial domain analysis. For
non-linear chaotic analysis, correlation integral is applied.

III. THE CORRELATION INTEGRAL

Correlation integral (CI) and Correlation dimension (CD)
are commonly used non-linear features for system chaoticity
estimation in epilepsy researches. For its calculation, it should
be noted that the complexity of the ECoG signal is reflected
in its dimension [18]. Therefore, the ECoG time series should
be mapped to a vector-valued phase space in higher dimension
for further analyses. Let the ECoG time-domain samples and
the embedding dimension of the ECoG signals be denoted by
{xi} and p, respectively. The vector Vi in the phase space could
be constructed using time-delay coordinates [18] as

Vi = (xi,xi+τ ,xi+2τ , ...,xi+(p−1)τ), (1)

where τ is the selected delay time between the components of
each vector in the phase space. For ECoG, p could be set to
7 and τ should be about 14 msec [18].

The correlation integral is defined as [6]

C(ε) =
2

N(N −1)

N

∑
i=1

N

∑
j=1, j �=i

Θ(ε −‖Vi−Vj‖), (2)

where N is the number of vectors under consideration, ε is
the distance threshold, ‖.‖ calculates the distance between the

Fig. 3. The ECoG waveform and the corresponding low-passed CI values
under different parameter sets. The seizure happens at 1358 to 1475 second.

Fig. 4. The phase vector groups, V1 through V10 and V2 through V11, for
consecutive CI computation, CIi and CIi+1, overlap with each other by 9
vectors, V2 through V10, which enables the differential scheduling scheme for
computational complexity reduction.

vectors, and Θ(.) is the Heaviside step function. From the
definition of CI, the correlation dimension is then given by [6]

D2 ≈ lim
ε→∞

lim
N→∞

logC(ε)
logε

. (3)

The above formula indicates that CD is estimated based on CI.
Besides, if taken as a measure itself, CI has the advantages of
better sensitivity, lower computational complexity and higher
noise tolerance when compared to CD [8].

IV. HARDWARE ARCHITECTURE DESIGN

As shown in section III, the CI computation consists of three
processing stages: 1) the phase space vector collecting and
packing from EEG/ECoG (VCP), 2) the vector-pair distance
computation and threshold comparison (DCTC) and 3) the
comparison result accumulation and output update (RAOU).
A vector memory (VM) is required to store vectors from VCP
for DCTC and RAOU processing. To realize the multi-channel
CI processor with low power consumption, the computational
complexity and the hardware area are two design challenges.

A. Reduction on Computational Complexity and Memory Size

The definition of CI in eq. (2) implies that the computational
complexity as well as the dynamical power consumption is
directly proportional to N2. The size of VM, which affects
the leakage power, is also proportional to N. Therefore, the
determination of N becomes a critical issue.

N is decided by two factors: 1) the vector sampling period σ
and 2) the window time W . σ indicates the collecting interval
of consecutive vectors from EEG/ECoG. If the first component
of vector Vi is xi, the first component of Vi+1 would be xi+σ . W
is the total vector acquisition time for one CI computation. To
decrease N, larger σ with smaller W is preferred. However,
large σ might sacrifice the chaotic-dynamics discriminating
performance. On the other hand, short window time could
result in inaccurate chaoticity estimation but increase the CI
sensitivity to abrupt EEG/ECoG changes and shorten the CI
computation latency [8].
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(a) Single-channel CI processors (b) Multi-channel CI processor

Fig. 5. Multi-channel CI processor is achieved by channel folding and multi-thread hardware sharing from the single-channel one.

TABLE I
SYNTHESIS RESULTS OF CI GENERATOR IN DIFFERENT PROCESSES

CMOS Process Core Area Dynamic Power Leakage Power
(μm2) (nW ) (μW )

90nm LL 107189 73.92 2.27
0.13μm 187948 166.18 104.52

Fig. 6. The DCTC and RAOU module for the multi-channel CI processor.

For conventional application of CI for seizure study, W =
2s and σ = 1 sample have been adopted for analysis [8]. We
further decrease W to 1s and increase σ to 24 samples. Note
that σ of 24 samples is the sparse-most period for the vectors
to cover all EEG/ECoG. Simulations are performed with real
long-term ECoG data recorded during presurgical monitoring
of 21 patients at the Epilepsy Center of the University Hospital
of Freiburg, Germany. Fig. 3 shows the result of ECoG
waveform with corresponding low-passed CI values for patient
3 as an example. For both parameter sets, lower CI values
could be clearly identified at the seizure stage. The qualitative
nature of the curves is unaffected, and the result validates the
application of the proposed parameter set for implementation.

The original σ and W have the corresponding N of 488,
while the new ones have the N of 10. By the decrease of N,
the computational complexity as well as the dynamical power
has been substantially lowered by 99.96%. The size of VM
is also reduced from the original 492kb to 10kb for total 16
channels, which contributes to the reduction on leakage power.

B. Differential Scheduling for DCTC and RAOU

With N of 10, eq. (2) indicates that total 45 pairs of
vector distance (VD) computation, Θ(ε−‖Vi−Vj‖), should be
performed for one CI value generation per channel. Under the
feature update period of 0.1 second and EEG/ECoG sampling
rate of 256Hz, Fig. 4 shows that the vector groups, V1 through

TABLE II
SIMULATION RESULT OF SEIZURE DETECTION

Feature Sensitivity (%) Specificity (%)
CI(original) 99.4286 98.2118

CI(proposed) 98.2286 97.8118

V10 and V2 through V11, for consecutive CI computation, CIi

and CIi+1, actually overlap with each other by 9 vectors,
V2 through V10. 9 vectors and total 36 pairs of VD are the
same for consecutive CI computation, and only 9 pairs of VD
should be recalculated. Therefore, we propose the differential
scheduling scheme for more complexity reduction at DCTC
and RAOU. Instead of 45 pairs of VD calculation, the update
of new CI value at RAOU comes from the old value plus
the difference of 9 changed VD pairs, and the DCTC only
compute the 9 changed VD pairs for one CI update. With the
differential scheduling scheme, the computational complexity
is further lowered by 80%, which decreases the dynamical
power consumption too.

C. Channel Folding with Multi-thread Hardware Sharing

Fig. 5(a) shows the architecture of a single-channel CI
processor. VCP contains the FIFO registers for vector col-
lecting and VM has only 1 bank for the storage of 10
vectors. For simultaneous multi-channel processing, parallel
implementations of single-channel CI processors shown in
Fig. 5(a) would consume large silicon area and result in high
leakage power consumption. Thus, the concept of channel
folding with multi-thread hardware sharing is proposed. By
combining the FIFO registers to form the systolic register
array, only one VCP module and one 16-bank VM is required
as shown in Fig. 5(b). Folding among channels turns the
original 16 10x63bits VM into only one 160x63 bits VM. The
area of VM is reduced from 0.135mm2 to 0.027mm2, and the
leakage power consumption corresponding to VM is decreased
by 80%. Multi-thread execution is applied for further hardware
sharing. Consider the computation of each channel as a thread,
a multi-thread FSM is featured to schedule the sharing of
DCTC and RAOU for total 16 channels in a time-multiplexed
fashion, and 93.75% area is saved for the DCTC and RAOU
module implementation.

The architecture of DCTC and RAOU based on the differ-
ential scheduling and multi-thread hardware sharing is shown
in Fig. 6. 16-channel operations share one DCTC unit, and
each channel possesses a corresponding bank in RAOU. The
VD registers memorize the 9 changed VD, and a subtraction is
applied to compute the difference of the 9 changed VD with
that in the history VD registers. The CI register is updated
by the accumulation of the old CI value with the 9 changed
VD. 16-channel CI computations could be completed within
0.1 seconds simultaneously.
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Fig. 7. The feature space distribution of the EEG data with normalized
feature (a) CL and RD and (b) CL and CI.

V. SIMULATION AND IMPLEMENTATION RESULTS

A. Simulation Results

The 16-channel CI processor is tested for the ability
of seizure detection with a general KNN classifier shown
in Fig. 1. The EEG data applied are recorded for nor-
mal (group Z), interictal (group N) and epileptic (group
S) subjects from the Epilepsy Center at the University of
Bonn, Germany. The data are made available online by Dr.
R. Andrzejak (http://www.meb.uni-bonn.de/epileptologie/ sci-
ence/physik/eegdata.html).

Table II shows the detection sensitivity and specificity of
the CI feature with original computing algorithm and the
proposed algorithm. The simulation results show that the CI
with proposed algorithm achieves the detection sensitivity of
98.23% and specificity of 97.81%, which performs as well
as the original one. But the implementation cost is greatly
reduced as shown in section IV.

Fig. 7 shows the example of EEG data in the feature space
with several different features. When only linear features, CL
and RD, are used as shown in Fig. 7(a), the boundary of
the three groups are not very clear. However, with the aid
of the non-linear feature CI shown in Fig. 7(b), the epileptic
data(group S) could be easily distinguished from the other two
groups, and a transition from the normal data to interictal data,
and finally to the ictal data could be discovered.

B. Implementation Results

We use different CMOS processes to implement the pro-
posed CI processor for the given specification. Table I sum-
marizes the synthesis results. Different from ordinary chip
designs, the power consumption of the CI processor is dom-
inated by the cell leakage power because of the low clock
rate. Thus, we take advantage of the 90nm low-leakage (LL)
process to minimize the leakage power. As shown in the table,
the leakage power of 90nm LL process implementation is
reduced by 97.8% when compared to the 0.13μm implemen-
tation. While recently proposed architecture for neuro-signal
processing usually consume the power at 10 to 20μw/channel,
the proposed CI processor only consumes the power at
0.14μw/channel. Fig. 8 shows the chip layout of the CI
generator in 90nm CMOS LL process, and the entire core
area becomes 0.143mm2.

VI. CONCLUSION

In this paper, a 16-channel CI processor for epileptic seizure
detection is proposed. The detection ability of this design

Fig. 8. The layout of the proposed CI generator in 90nm LL CMOS process.

achieves the detection sensitivity of 98.23% and specificity of
97.81%. Also, the synthesis result and layout shows that the CI
processor in 90nm LL process has the core area of 0.143mm2

and the power consumption of 0.14μW/channel. The CI
processor provides an solution for real-time EEG/ECoG pro-
cessing with low power consumption, which is applicable to
the seizure detection part of a closed-loop epileptic neuromod-
ulation system.
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